欧美一级爱爱视频-欧美一级爱操视频-欧美一级暴毛片-欧美一级爆毛片-欧美一级别-欧美一级成人

深入場景,智能決策倍增數字化轉型價值 | 愛分析報告

   2023-01-04 1888
核心提示:價值驅動下,智能決策擁有光明的發展前景。在廣度方面,當前智能決策主要在金融、消費品與零售、國防軍工、政府與公共服務、能源、物流、航空、醫療與醫藥、制作、汽車等行業落地應用,未來將持續擴大覆蓋范圍,智能決策有在任何行業發揮價值的潛力。

 

報告編委

 

黃勇 
愛分析合伙人&首席分析師
李進寶
愛分析高級分析師
蘭壹凡
愛分析分析師
外部專家(按姓氏拼音排序)
岑潤哲
數勢科技 金融行業解決方案負責人
劉夢溪
數勢科技 零售行業解決方案負責人
錢智毅
淵亭科技 政務行業總監

 

特別鳴謝(按拼音排序)

 

 

目錄

1. 報告綜述

2. 消費品與零售行業智能決策實踐

3. 金融行業智能決策實踐

4. 政府與公共服務行業智能決策實踐

5. 結語

1.   報告綜述

經濟新常態下,精細化運營成為企業增長的關鍵動力,對決策質量提出了更高要求。同時,復雜多變的商業環境使決策約束條件不斷增多,并對決策敏捷性提出了更高要求。因此,依靠業務規則和專家經驗的傳統業務決策愈發難以滿足企業的需求,企業需要對決策方式進行升級。

智能決策具備助力企業實現決策方式升級的能力,并已在消費品與零售、金融、政府與公共服務等多個行業落地應用。智能決策正在這些行業的場景發揮作用,在生活中隨處可見。在大型超市,擺在消費者面前的為什么是這些商品組合;在銀行,貸款者的貸款申請為什么能快速出具結果;在行政大廳,企業的申報材料為什么有時能馬上出具審核結果……智能決策不斷釋放“魔力”,對人們的生活方式和企業的生產經營方式施加愈發深刻的影響。

隨著市場發展,這種影響方式也在不斷發生變化。甲方在落地智能決策項目時,可以分為單點式、單線式和全局式三種情況。單點式指在某個細分業務場景實現智能決策;單線式指實現某一類細分業務場景的智能決策閉環;全局式指實現多個大類業務場景的智能決策。智能決策價值逐步得到市場驗證,甲方對單線式和全局式的智能決策項目更加青睞,在實踐中供需雙方常稱其為“決策大腦”類項目。以“決策大腦”為承載,智能決策將有更大的展示舞臺。

目前來看,消費品與零售行業、金融行業、政府與公共服務行業在“決策大腦”方向居于發展前列。本報告將選取這三個行業的智能決策解決方案市場作為研究對象,圍繞該解決方案在大中型企業和政府部門的落地應用展開研究,重點分析各行業的甲方對智能決策的需求和落地情況。

圖 1: 智能決策市場全景地圖

 

 

2.消費品與零售行業智能決策實踐

消費品與零售行業的甲方包括零售商超、品牌商、電商等,智能決策解決方案主要用于滿足智能營銷、智能定價、智能補配調等需求,終端使用者主要分布在IT、數據、運營、供應鏈、門店等部門。

消費品與零售行業的甲方對“決策大腦”的需求體現在供應鏈優化和用戶運營兩個方面,致力于打造涵蓋“買”與“賣”全流程的智能決策體系。專家經驗面對海量SKU和消費者愈發捉襟見肘,難以高效且正確地做出決策,甲方希望借助智能決策找到破局之道。企業可以通過智能決策實現供應鏈優化,解決缺貨、高庫存、SKU臃腫、門店個性選品策略缺失等問題。例如SKU臃腫問題,該問題在商超業態非常明顯。商超傾向追求大而全,導致SKU數量驟增,當甲方意識到一些SKU并非必要且不盈利的時候,試圖做“減法”。可面對數萬乃至數十萬SKU時,如何快速準確地挑選出需要剔除的商品成為一個難題,專家經驗失靈。企業可以通過智能決策實現更加精準的用戶運營,解決人群圈選方式低效、人群圈選方式不能自動調優、難以個性化運營等問題。

圖 2:消費品與零售行業智能決策主要應用場景

 

 

消費品與零售行業智能決策解決方案的項目環節大致包括業務梳理、方案設計、產品引入及改造、聯調與打通、試運行、驗證評估與正式上線等環節。在業務梳理環節,廠商除了需要梳理甲方業務布局、工作流程、業務規則的信息,還需要梳理甲方的業務數據治理情況。在消費品和零售行業,除頭部電商之外,其他企業的數據質量和完整性普遍存在缺陷,若直接應用智能決策將會出現明顯偏差。智能決策解決方案需要站在“數據巨人”肩膀上發揮作用,因此對數據治理能力有較高要求,比如建立數據規則、打通數據孤島、數據集中管理等。當前,較多有實施智能決策項目意向的消費品和零售企業不具備優良的數據治理能力,以至于難以滿足智能決策需求,因此甲方需要得到來自廠商的數據治理賦能。在智能決策項目實施過程中,甲方需要著重注意此點。

案例1: 某零售商超攜手數勢科技,實現經營、運營、供應鏈場景的決策效率提升

某國內零售商超經過20年耕耘探索,已經成為運營上千家門店的頭部零售商超集團,年銷售額近千億元。2020 年,疫情下的零售市場受到巨大沖擊,線上零售玩家爭相進入市場,競爭日益激烈。該零售商超為適應當下消費者需要,嘗試運用數字化和智能化手段突破經營效率瓶頸,將消費者線下消費習慣轉移至線上,推動線上線下全渠道經營效率提升。

在過去的數字化轉型過程中,該零售企業發現,簡單的數字化場景試點項目無法提升整個企業經營效率,企業經營仍然未能實現數據驅動決策。因此,該零售企業決定對整體運營模式進行全面數字化升級,引入智能決策構建全局決策能力體系是重中之重。

綜合考慮下,該零售商超選擇了在智能決策領域嶄露頭角的數勢科技。數勢科技的技術團隊大多是京東商城的核心骨干出身,在經營分析、客戶運營、供應鏈優化等智能決策應用領域頗具優勢。不僅如此,京東以自營方式開展電商業務的運營模式也與該零售商超的運營思路不謀而合。

“0+7”數字化轉型計劃,助力該零售商超實現“以數據驅動經營決策”的轉型目標

為助力該零售商超企業實現“以數據驅動經營決策”的數字化轉型目標,數勢科技計劃先根據該零售商超的數字化經營狀況進行全面診斷,即“0號”數字化戰略咨詢項目,再根據診斷結果分設7個子項目,對轉型難題逐個擊破。整體轉型項目流程如下:

圖 3:某零售商超“0+7”數字化轉型項目流程

 

 

為制定全面且有針對性的數字化轉型方案,該零售商超與數勢科技首先進行了“0”號診斷咨詢項目,發現以下待優化問題:

1.云基礎設施較為分散:成本高、網絡連接不穩定、運維復雜、底層架構不統一,需要將云服務進行整合。

2.中臺重復建設:企業內部各業務線自行開發技術中臺、數據中臺和交易中臺,造成技術中臺組件和數據庫較為雜亂,且各中臺數據無法跨業務線互通。需要對技術組件、數據中臺、交易中臺進行統一。

3.標簽、指標體系混亂:由于各數據中臺擁有不同的標簽體系、指標體系,導致數據存儲成本、標簽管理成本過高。對指標進行規范化的口徑管理和拆解,減少冗余指標,降低管理難度。

4.用戶運營效率低:在用戶標簽層面,標簽數量少,畫像不夠完善,效果分析維度不夠全面。在營銷決策層面,無法實時為用戶精準推送營銷活動、利益點及內容,且策略無法實現自行調優,推送觸達成功率低,用戶體驗有待提升。

5.供應鏈優化問題:目前搭建的供應鏈系統仍無法提供智能預測補貨、智能選品、品類結構優化功能。需要通過智能決策技術,為門店選擇最優的商品組合,提高庫存周轉率和資金使用效率。

由此,數勢科技對零售商超整體數字化水平及建設給出更詳細的改善計劃,提出7個改進方向:統一云平臺、技術中臺、數據中臺、用戶運營決策平臺、交易中臺、智能供應鏈決策平臺、物流履約平臺,分別對應1-7號子項目。其中,數據中臺、用戶運營決策平臺以及智能供應鏈決策平臺是本次智能決策實踐案例關注的重點。

該零售商超先夯實數據基礎,再針對經營、運營、供應鏈場景實現智能決策升級

由于其他場景智能決策平臺的構建都需要數據底座基礎能力的支持,因此數據中臺項目率先啟動。

1. 數據中臺建設

在數據中臺建設項目上,該零售商超技術團隊和數勢科技需要對原始業務系統和數倉實現數字化升級,為其建立從底層的離線數據、實時數據采集、數據批量處理,到數據資產指標口徑統一,然后向上提供完整的跨領域服務的一整套數據基座。具體分為以下三個步驟:

(1)整合底層的基礎大數據平臺。由于該零售商超不同團隊內部單獨建設數據中臺,導致數據孤島問題。數勢科技首先輔助解決數據中臺重復建設難題,統一整個企業的數據底座,隨后補全了基礎數據平臺統一采集、實時采集能力,保證統一高效的數據平臺的開發和管理。

(2)統一數據資產、統一指標體系。雙方從利潤方向、規模和效率方向,重新梳理了一整套指標體系。同時又實現了從前端供應鏈采購到后端門店終端,線上不同渠道間都形成了口徑對齊,保證對于決策層數據都是真實可用的。

(3)建設經營分析平臺。數勢科技針對報表分析脈絡進行了梳理,管理層設計鏈接策略執行層,包括部門級別分析體系和核心場景。雙方團隊基于該零售商超的分析體系建立了經營分析職能體系,還同時連接了數字化持續運營的sop,輔助該零售商超基于數據持續運營決策判斷。

2. 用戶運營決策平臺建設

該零售商超為適應消費者購物習慣轉變,已經構建以用戶為中心的運營體系,但用戶運營相關系統存在用戶畫像不完善、缺少實時及多波次的精準營銷能力、營銷效果難以分析等問題。而雙方團隊此次通過對數勢科技的用戶決策產品組合運用,實現用戶運營決策平臺從“經驗驅動運營”向“數據驅動運營”、從“粗獷式人工運營”向“精細化自動運營”、從“單渠道割裂運營”向“全渠道一體化運營”的決策升級轉變,解決了上述用戶運營難題。

圖 4:用戶運營決策平臺架構

 

 

 在用戶運營決策平臺建設子項目中,該零售商超構建用戶標簽體系、用戶策略體系,建設用戶可識別、用戶可分析、用戶可觸達、自動化、智能化的一站式用戶運營決策平臺:

(1)該零售商超通過數勢科技用戶數據平臺(CD)的標簽管理模塊統一梳理內部標簽,構建起完善的標簽體系。同時,運用算法模塊中的分層模型進行用戶分層,明確用戶畫像,為用戶運營策略提供多維度的數據支持。

(2)該零售商超運用用戶洞察分析(CI)進行用戶概覽和拉新培育、用戶遷移等維度進行監測,并對細分人群的畫像特征進行數據分析,為用戶運營決策提供建議。

(3)該零售商超借助用戶策略平臺(CJ)中的計劃引擎、策略庫、策略設計模塊搭建和梳理用戶運營策略框架。基于用戶畫像分析結果進行營銷動作執行和匹配,對新老用戶制定不同的運營策略。再通過策略執行、策略分析、對接管理模塊實施多波次的、實時精準的自動化營銷。比如99節活動時,平臺將促銷信息通過短信推送形式或企微社群的方式智能觸達到用戶。

(4)該零售商超對線上渠道觸點統一管理,建設可視化的APP/小程序頁面編輯器,設置了豐富的商品組件、營銷組件、內容組件,并建立消息頻控、免打擾等用戶體驗保障機制,提升用戶體驗和消息觸達轉化率。

3.智能供應鏈決策平臺建設

無論企業規模大小,庫存周轉率低、SKU冗余、資金使用效率低是零售企業共同面臨的難題。針對這些難題,該零售商超提出實現智能補貨、智能選品和品類結構優化的明確需求。

(1)針對智能選品:基于數勢科技的算法積累和技術優勢,為不同地址的門店智能選擇優勢商品。比如為CBD附近的門店選擇零散商品,為位于郊區的倉儲店選擇量大的家庭包裝,以適應不同人群的購物習慣。

(2)針對預測補貨:該零售商超將經過充分調研的補貨規則融入模型中,設置補貨市場、前置期等規則因素,根據預測結果進行貨物數量的及時調整,規避缺貨情況,降低缺貨率。

(3)針對品類結構優化:對單個門店而言,真正有核心商品力的產品不多,通過預測補貨和智能選品來優化品類結構,后端采購供應減少對接的供應商數量和商品種類,前端不必頻繁更新商品。

通過整體數字化轉型和決策智能化提升,該零售商超真正實現“以數據驅動經營”目標

通過“0+7”數字化轉型項目,該零售商超完善了七大技術平臺能力建設,在全渠道時代構建了四大核心關鍵能力:全渠道用戶運營能力、全產業優質供應能力、全場景數字化經營能力、以及全鏈條智能履約能力,在增收、降本、增效方面上為該零售商超帶來了顯著價值。

圖 5:“0+7”數字化轉型項目成果

 

 

  •      數據中臺建設統一了集團內部指標體系和標簽體系,實現了數據指標和業務數據可視化,數據開發越來越高效,分析決策平臺正式上線標志著該零售商超真正實現了“以數據驅動經營”的目標。

  •      該零售商超用戶運營策略實現精細化后,完成了用戶域400+常用標簽建設,日均100+個策略執行,日均1000萬人次自動化全渠道觸達,社群交易轉化率提升了26%,實現了月度2000萬以上的業績增量,降低了80%的精細化運營人力時間成本,整體提升了5倍的運營效率。

  •      智慧供應鏈決策平臺建設以后,該零售商超精確了供需預測,庫存周轉天數下降了30%,釋放了25%的庫存金額,提升了庫存周轉次數和動銷率,降低了庫存成本,降低了門店的缺貨率。

3.金融行業智能決策實踐

金融行業的甲方包括國有大行、全國性股份制銀行、城商行、農商行等多種銀行,也包括保險公司、證券公司等其他各類金融機構。智能決策解決方案主要用于滿足智能營銷、智能風控、智能核保等需求,終端使用者主要分布在IT、數據、風控、產品、運營等部門。

圖 6:金融行業智能決策主要客群

 

 

金融行業的甲方對“決策大腦”的需求體現在用戶運營、保險和借貸等場景,致力于打造涵蓋業務全局的智能決策體系。甲方在落地智能決策項目時,可以分為單點式、單線式和全局式三種情況,在金融行業尤為明顯。單點式指在某個細分應用場景實現智能決策,比如某金融機構推出新產品,需要在老客戶名單中尋找購買意向最高的群體,此時可以借助智能決策的力量。單線式指實現某一類細分場景的智能決策閉環,比如用戶運營包括多個環節,可以借助智能決策的力量實現甲方整個用戶運營工作的智能決策。全局式指實現多個大類場景的智能決策。

圖 7:金融行業智能決策主要應用場景

 

 

金融行業智能決策解決方案的項目環節與消費品與零售行業相似。項目總時長一般在6個月以上,略短于其他行業的項目總時長。金融是第一熱門行業,用戶已經從頭部機構擴展至腰部機構,而其他行業的智能決策用戶還停留在頭部機構,就平均項目規模而言,金融行業稍小一些,因此用時相對較短。

數據治理問題不僅存在于消費品與零售行業,在金融行業同樣存在。除此之外,金融行業智能決策項目還有兩個實施要點,分別為信創要求和決策結果可解釋性。廠商需要符合信創資質,在項目實踐中,廠商主要通過信創組織身份、底層國產軟硬件產品互認證書、信創項目案例、信創環境測試報告和國家信創產品名錄(非公開)五種方式來證明。信創工委會是重要的信創組織,“信創”一詞便由其提出,廠商加入其中獲得成員身份對廠商參與有信創要求的項目較為重要。底層國產軟硬件產品互認證書指智能決策廠商需要和國產芯片、操作系統、數據庫和中間件廠商進行適配工作并取得證書,比如龍芯、麒麟操作系統、達夢數據庫等廠商。信創環境測試報告指智能決策廠商將產品置于信創環境,取得相關測試報告,以證明可用性。

在金融行業的諸多應用場景中,有些應用場景對決策結果的解釋性需求較低,更看重效果,例如精準營銷場景。有些應用場景對決策結果的解釋性需求較高,例如智能風控場景,在該場景下,銀行根據智能決策結果決定不給某些客戶提供貸款,需要出具相應的解釋。相較于消費品與零售行業,金融行業對決策結果的解釋性有更高需求。

案例2: 某頭部券商打造數字化客戶經營平臺,實現客戶運營決策智能化

某頭部券商成立于20世紀90年代,公司總部設在深圳,經歷多年穩健經營,該券商已成長為國內主流券商之一。該券商經紀業務近年著重提升獲客和改善客戶結構,截至2021年上半年經紀業務個人客戶數和活躍客戶數位居市場前列。

然而,規模日益擴大的客戶數量對該券商客戶運營業務帶來諸多挑戰。該券商舊有的運營平臺存在數據洞察過程不透明、數據洞察時間占比少、營銷策略設計經驗無法沉淀、線上業務推進率低、數據孤島、運營流程斷點等難題,造成線上客戶運營效率低下,無法充分挖掘客戶價值。

為不斷提升客戶運營質量,該券商期待通過更高效的運營平臺建設方案突破數據層面、技術層面和產品資源層面的瓶頸,運用人工智能技術提升運營環節的靈活性和存量客戶的精細化運營效率。

因此,該券商對數字化客戶經營平臺建設方案提出了以下目標:

圖 8:數字化客戶經營平臺建設方案目標

 

 

第一,優化已有的客戶經營平臺,促進智能化升級。

(1)實現平臺內數據互通、共享,解決數據孤島問題。

(2)實現運營流程智能化、自動化,自動收集散落在各系統里營銷策略、營銷活動的數據和信息,提升運營決策效率。

(3)實現數據洞察過程透明化,以便評估數據洞察效果,定位細分人群和執行后續運營決策。

(4)平臺能夠沉淀運營策略設計經驗,將運營分析師的歷史經驗轉化為數據,沉淀成公司資產,將其作為設計運營策略的依據。

第二,以客戶經營平臺為核心,驅動其他系統平臺能力升級。完善經營平臺周邊系統的基礎建設,提升線上業務的推進效率。

第三,確保交易高峰期也能實時進行營銷流程。

經過深度考察,該證券公司選擇數勢科技作為合作伙伴。數勢科技能夠憑借豐富的金融領域業務Know-how以及技術積累,運用包括數據資產云、經營分析云、智能營銷云在內的一系列智能決策產品,根據金融企業業務決策痛點,為企業提供良好的診斷咨詢服務和切實可行的場景解決方案,助力金融企業實現智能運營、智能營銷等場景下的決策效率提升。

圍繞精細化運營需求,建設方案運用智能決策技術為數字化客戶經營平臺升級賦能

為助力該券商構建科學合理的標簽體系、制定精細化客戶分層策略、完善客戶運營功能閉環和策略迭代升級,數勢科技給出如下數字化客戶經營平臺架構方案:

圖 9:數字化客戶經營平臺架構

 

 

整個數字化客戶經營平臺建設方案分為三個步驟:

第一階段:標簽平臺、指標平臺以及周邊系統升級。在原有經營平臺的基礎上,數勢科技輔助該券商進行客戶經營平臺的數據治理、統一數據口徑。接著,與券商技術團隊將散落在各個系統中的標簽和指標分類進行科學梳理,構建統一的指標平臺和標簽平臺,實現各平臺間信息共享、數據互通。同時,指出該券商需要客戶層面、產品匹配層面、市場信息輸入層面、觸達客戶渠道層面四個方向升級,優化客戶經營平臺的數據資產層,鞏固和提升客戶經營平臺整體的數字化能力。

第二階段:客戶旅程自動化營銷策略平臺搭建。在該券商原有客戶經營平臺提供單獨事件的策略服務基礎上,數勢科技提出增加智能決策平臺部署,為運營人員提供便于操作的智能化策略工具,基于數據資產層的指標平臺和標簽平臺科學合理的精細化客戶分層機制,智能設計更有針對性的運營策略,比如多波段全局打通的策略觸達,或利用客戶行為觸發策略推薦。同時結合實時智能技術增強該券商精細化運營能力,提升對高潛用戶、預流失用戶的營銷精準度,進一步增強運營策略的時效性、擴大運營策略的覆蓋范圍。

第三階段:策略效果分析平臺搭建。前倆階段夯實經營平臺數據分析基礎和完善智能運營策略推薦機制后,數勢科技將搭建客戶經營策略效果分析平臺,實現策略效果的智能化分析。數勢科技將運用機器學習算法和運籌優化技術實現策略模型自迭代,讓自動化營銷策略平臺根據數據分析結果自主實現策略修改。讓策略效果分析平臺與營銷策略平臺構成營銷策略智能設計、策略智能推送、策略效果智能評估、策略自迭代升級的完整閉環,來大大降低運營人員使用策略平臺的難度,實現客戶經營平臺決策效率提升。

圍繞存量客戶的精細化運營升級這一核心需求,數勢科技為該券商設計和驗證了數字化客戶經營平臺的最小可行產品,該券商也從可行產品中得到了“智能決策是否能切實提升運營環節的靈活性”這一問題的肯定答案,與數勢科技共同推動數字化客戶經營平臺,將其作為該券商整體數字化轉型的抓手之一。

借助數字化客戶經營平臺,該券商解決了營銷數據不準確、平臺信息接口多、交易高峰期營銷推送滯后的難題

在整體搭建數字化客戶經營平臺過程中,該券商技術團隊和數勢科技以先試點再推廣“小步快走”的方式逐漸釋放業務價值,對營銷數據不準確、平臺信息接口多、交易高峰期營銷推送滯后多項難題進行逐個擊破。

1.利用指標平臺統一指標口徑,保證營銷數據準確性。數字化客戶經營平臺所有策略決策過程都需要參考營銷環節收集的數據,因此,確保數據的準確性成為頭號需求點。數據不準確問題往往來源于不同數據平臺的數據源底表差異和指標口徑的差異,數勢科技提出將數據源底表合并,并引導券商一同開展數據治理工作,為指標平臺搭建、客戶旅程自動化營銷策略平臺、以及策略效果分析平臺奠定了良好的數據基礎。

2.統一信息接收和分發接口,實現一對多數據接入。數字化客戶經營平臺處于客戶運營的核心,扮演運營中心的“決策大腦”的角色,經營平臺需與金融產品團隊、技術研發團隊、策略運營團隊等進行需求溝通、項目排期、數據對齊等動作,涉及十幾個平臺的交互協作,與其他系統的接口對接多、依賴多,項目管理難度因此成倍增長。數字化客戶經營平臺面對該券商內部對接多個部門的難題,統一了信息接收和分發的接口,降低了溝通成本,削弱信息不對稱帶來的負面影響。

3.自迭代實現平臺性能優化,實現交易高峰期的實時智能營銷推送。金融行業數據規模大、時效性要求高,在高頻交易的四小時內,該券商的埋點數據就可達5-7個億。證券公司在交易高峰期還需對海量宏觀數據、市場數據、公司數據、客戶數據等進行多方分析,瞬時內輸出個性化的營銷推送。面對券商交易時間內數據量大的問題,數勢科技團隊通過實時智能技術和機器學習、運籌優化的智能決策技術,完善和優化了數字化客戶經營平臺,提升了日均策略的執行量和觸達人次,確保交易高峰期的實時營銷推送。

數字化客戶經營項目取得標簽平臺升級、策略覆蓋率與時效性提升、各場景決策效果提升的顯著成效

圍繞存量客戶精細化運營升級目標,數字化客戶經營項目在該券商推廣落地后,在用戶運營、基金銷售、線下隊伍、投顧服務、財客運營五大業務線取得了顯著的業務效果提升。

圖 10:數字化客戶經營項目平臺成果

 

 

1.標簽平臺升級。數勢科技從標簽系統功能、標簽體系結構、標簽運營管理機制三個維度對標簽平臺進行升級,標簽綜合使用率從15%+提升至70%+。

2.策略覆蓋與時效性提升。數字化客戶經營平臺落地應用后,日均觸達人次由100萬+提升至3000萬+,實時決策占比由0%提升至70%+。2021年線上用戶運營團隊進行推廣落地時,積累200+多波段的運營策略,10+終端用戶。2022年,數字化客戶經營平臺在基金銷售、線下隊伍、投顧服務、采購運營進行推廣應用,常規執行策略積累500+,終端用戶積累40+,日均注冊用戶的服務覆蓋率為100%。

3.各場景決策效果提升。數字化客戶經營平臺在券商各部門推廣后,公募基金、理財產品90天新客破冰率由8%提升至13%,線下投顧商機增長80%,線上開戶轉化率提升30%。

4.政府與公共服務行業智能決策實踐

政府與公共服務行業的甲方主要有三類:

圖 11:政府與公共服務行業行業智能決策主要應用場景

 

 

一、具備監管類職能的單位。例如保障金融安全的銀保監會、交易所等,以及保障公共安全的公安、國安等。這些單位基于交易數據、賬戶數據、通話數據、出行數據等合法獲取的信息,利用智能決策相關技術,及時定位問題、防范風險事件,例如金融的關聯交易發現,公安的犯罪嫌疑人研判等。智能決策技術在該類客戶主要的作用是提升監管效能。例如某省公安廳建立維穩情報信息平臺,希望借力科技信息化手段,創新工作機制,實現工作從“多部門手工研判”向“智慧型一站式研判”轉變,大力提升工作質量和工作效率。相關智能決策廠商利用云計算、大數據、人工智能等先進技術,搭建橫向可動態擴張的軟件平臺,建立預警發現、分析研判的決策模型以及業務應用系統。

二、城市運行決策機構。例如應急管理部門、交通管理部門。這些部門利用機器學習、深度學習等技術形成城市運行決策模型,實現目標場景運行態勢、問題行為、突發事件的事前預案推演、事中快速響應,應用場景包括社會態勢感知、城市內澇風險預判、疫情防控等。例如2019年北京市人社局提出的需求,通過對輿情、產情、企業競爭力的綜合評估,對可能存在的勞動關系用工風險進行預警和研判,為數字經濟環境下營造和諧勞動關系提供參考和決策支撐,為相關單位提供輔助決策。相關智能決策廠商通過互聯網信息進行監測,建立統一的互聯網勞動關系用工風險輿情數據主動采集服務,對存在風險企業進行上報監測,對輿情、產情、企業競爭力的綜合評估,對可能存在的勞動關系用工風險進行預警和研判。

三、幾乎所有涉及行政審批的部門。審批涉及的政策法規較多,人工處置和判斷工作量大、容易出錯且耗時長,通過綜合運用OCR、NLP、RPA、知識圖譜、規則引擎、機器學習、深度學習等技術,對申報材料進行智能分析和審批,實現審批過程的智能申報審核、紙電一致智能核對、智能審批預決策等。

政府和公共服務行業的甲方選擇啟動智能決策項目,主要因為傳統的信息化已經無法滿足他們的業務需要。隨著政府業務流程復雜化,數據量爆炸式增長,人力成本不斷提高和公眾對政府服務的便捷性、智能化要求越來越高,政府和公共服務行業的甲方需要有更加智能化的手段來進行決策,提升服務效率和準確性,降低人工成本。以涉及行政審批的部門為例,甲方對“決策大腦”的需求為完整審批流程的智能化,全面提升審批效率和準確率,最終實現辦事人員體驗以及政府部門人效的提升。

對于廠商而言,這些需求主要考驗廠商的技術能力、成熟的定制化服務能力、豐富的政務領域應用落地經驗。技術能力主要體現在海量政務數據的處理能力,高準確率決策模型的構建能力、算法和數據的安全性等方面,成熟的定制化服務能力和豐富的政務領域應用落地經驗指廠商對政務業務場景具有比較深的理解,在解決方案中能夠將智能決策技術與應用場景相結合,切實解決用戶的痛點需求,確保項目成功實施。

案例3:政策兌現智能審批系統助力某市高新區實現審批智能化,效率提高62.5%

某市高新區管理單位作為市政府的派出機構,是該市高新區的管理和服務部門,主要負責高新區的發展規劃制定、科技創新和體制創新的方針政策制定,負責為高新區建設科技中介服務體系,組織國家相關計劃項目、技術創新基金項目的推薦、申報和管理工作,審批高新區投資項目及各類企業機構,并實行統一監督管理。

然而,在審批監督管理工作中,日趨復雜的業務流程、爆炸式增長的數據量以及日益攀升的人力成本,使得該單位的惠企政策兌現工作承受巨大壓力,現有的信息審批系統無法滿足當下惠企政策兌現的業務需要。與此同時,企業對公共服務的便捷性、智能化要求越來越高,該單位需要更智能化的手段以輔助決策,提升服務效率和準確性,降低人工成本。

為重點解決現有申報系統企業申報端面臨的申報材料多、申報審批耗時長、企業耗費精力大等問題,以及政府審核端面臨的企業材料繁雜、審批難度大、人工審核耗時長等問題,通過對目前高新區企業政策兌現工作流程痛點進行分析,該單位提出以下項目建設需求,并預期政策兌現智能審批系統與現有平臺體系進行深度融合,同時具備良好的兼容性和擴展性,以適應業務發展需要。

圖 12:某市高新區管理單位政策兌現審批流程痛點及項目建設需求

 

 

綜合上述需求,該單位需要選擇兼具成熟智能決策技術和豐富行業服務經驗的復合型廠商進行合作。經過多方評估,該單位鎖定了在政務領域具備智能決策定制化服務能力的淵亭科技作為合作伙伴。

淵亭科技在知識圖譜、圖計算、強化學習、深度學習等領域擁有核心技術優勢,與多省公安廳和地市政府在智能決策應用場景上有著深入合作,行業項目落地經驗豐富。淵亭科技自主研發的智能決策平臺,可運用知識推理解決定性分析問題、運用模型計算解決定量分析問題,充分做到了定性分析和定量分析的有機結合。平臺支持從規則/模型開發,到決策流編排設計,再到部署、應用、評估以及運維的智能決策全生命周期服務流程,為高效政務管理、決策提供保障。

建設政策兌現智能審批系統,對原有政策申報系統的低效決策流程進行智能化改造升級

為著力解決該管理單位原有申報系統存在的問題,實現智能化審批決策流程,建立惠企政策服務支撐機制,切實提高惠企政策服務能力。淵亭科技進行了為期四周的需求調研,形成政策兌現智能審批系統的建設方案。方案針對原有政策申報系統中的典型決策低效環節,進行審批決策智能化改造升級。

圖 13:政策兌現智能審批系統建設項目業務架構圖

 

 

基于認知推理、智能決策、深度學習、OCR、NLP算法等技術,淵亭科技計劃對原有政策申報系統的政策發布、初審、復審決策流程進行智能化升級。通過智能管理政策庫和智能控制政策發布,實現政策發布流程智能化;通過線上申報自動核驗和紙電一致智能審核能力,實現審核決策智能化;運用RPA技術實現審批流程的自動化管理,以實現減少重復工作量、提升審核速度、不見面審批以及檔案臺賬電子化的業務目標。

具體實施過程中,淵亭科技將自主研發的DataExa-Sati認知智能中臺和DataExa-Karma智能決策平臺作為政策兌現智能審批系統的基礎,依靠全面的定制化服務能力,實現智能審批系統與原有申報系統的融合升級。

圖 14:政策兌現智能審批系統技術架構圖

 

 

該智能審批系統架構分為數據層、能力層、應用層和展現層。

  •      數據層:該智能審批系統的數據主要來自企業申報材料和基礎信息庫,申報材料主要包括產業相關人才及企業獎勵和補貼政策申報等申報事項所涉及到的申報材料,類型包括表格、身份證、申報表、證書、聲明文件等;基礎信息庫包括法人庫、三高企業庫、電子證照庫等目前平臺體系內的第三方數據庫。

  •      能力層:該審批系統能力層匯集了認知中臺、決策中臺和智能組件集,組件集中包括OCR組件、NLP組件、規則引擎組件、智能核對組件和RPA流程自動化組件,可為應用層各項業務功能提供支持。

①認知中臺提供智能問答、語義挖掘、知識圖譜、知識推理、智能搜索等基礎認知能力;

②決策中臺運用決策引擎支持決策流配置、決策流編排、分時混合決策、分流混合決策等智能決策相關的開發配置;提供智能決策、自動學習、推理服務、模型評估、智能推薦等決策能力;

③在智能組件集中,OCR組件提供了包括表格識別、文字識別、印章識別、證書識別、手寫字識別在內的多種圖像類型的識別能力,以解決各類型申報材料識別的需要;NLP組件提供了相似度模型、句向量模型等處理能力;規則引擎組件提供決策規則的開發,包括申報政策審批的規則生成、規則集配置、規則管理、規則校驗、規則切換和復雜規則的設計,如政策提交的填寫規則配置;智能核對組件提供了包括核對分析、核對判斷、核對驗證等能力。

  •      應用層:該審批系統應用層通過和既有的用戶體系對接,實現單點登錄,同時針對業務審核場景,提供了政策配置管理、政策智能申報、智能申報審核、紙電一致智能審核、智能審批決策、審批圖譜分析、流程自動化管理等功能模塊。

政策配置管理:通過內置的規則引擎,政策發布人員可根據政策信息來配置可視化流程規則,為后續智能審批提供規則支持。

政策智能申報:該功能融合管道式、競爭式、組合式的問答策略,在用戶申報信息填寫時提供指導,為政策申報場景提供定制化的智能問答能力,幫助用戶端申報提效。

智能申報審核:該模塊可運用OCR、NLP技術識別審批材料中的表格、公章、文字、數字,將識別內容與對應政策的通過規則、約束條件進行比對,并運用語義挖掘、邏輯推理等方法自動對申報信息進行處理,輸出審核結果通過項與不通過項。

紙電一致智能審核:通過智能核對、OCR、NLP等技術將紙質申報材料與電子文檔進行智能比對,識別出紙質文件是否與電子文檔一致。

智能審批決策:在初審、復審的關鍵環節,智能審批決策模塊結合決策引擎中的智能決策、自動學習、模型評估能力,對政策申報審批的結果進行自動判斷,對符合申報要求的材料予以通過,對不符合申報要求的材料予以駁回,并提供優化意見。對于無法自動給出審批結果的情況,會自動轉為業務工單,業務人員主動進行人工處理。

審批圖譜分析:該功能利用知識圖譜技術進行審批要素的拆解和組織,形成政策申報企業畫像,為企業政策精準解讀與推送提供有效支撐。

RPA流程自動化操作:RPA流程機器人按照設置的操作流程自動完成信息查詢、規則判斷、自動點擊操作等功能,大大減少人工操作的工作量。

通過認知智能+決策智能技術,該管理單位實現企業政策兌現審批流程決策智能化、審核自動化、申報便利化

基于政策兌現智能審批系統建設項目,該管理單位在保留舊有業務平臺能力的基礎上,構建了使企業申報、政府決策更加便捷和高效的智能審批系統,推動了申報、審批業務流程再造與智能化方式實現,優化了審核手段,提升了政策審核工作效率,為企業、政府降本提質增效提供了全新的實踐路徑與開拓性經驗。

圖 15:政策兌現智能審批系統建設項目成果

 

 

  •      在企業申報方面,減少了企業所提交的申報材料、縮短了申報審批通過時長,極大簡化了企業申報的流程,充分降低了企業申報的復雜度,使企業申報更便捷、更高效。

  •      在材料審核方面,引入OCR圖像識別、文字匹配、智能推薦、智能審批等技術,達到了材料線上自動審核的效果,在材料預審、初審和紙電一致材料核對等環節大幅提升了處理效率和問題發現的能力,減少了人工審核誤差,并適當地優化了人工審核環節,使政務工作高效化、公開化、透明化。

本項目建設有效的增強了政策兌現申報的服務能力,實現了不見面審批和檔案臺賬電子化,切實提升了高新區政策兌現的服務體驗,為實現全流程“零紙質、零跑腿、零人工”打下基礎。

5.結語

數智時代來臨,企業的業務流程與治理方式面臨全方位重構。企業決策不外如是,從“人治”向“智治”轉變是大勢所趨。智能決策核心價值在于讓企業可以更快、更優地進行決策,以便更好地適應新時代商業環境,在經濟下行的背景下,此點變得尤為重要。

價值驅動下,智能決策擁有光明的發展前景。在廣度方面,當前智能決策主要在金融、消費品與零售、國防軍工、政府與公共服務、能源、物流、航空、醫療與醫藥、制作、汽車等行業落地應用,未來將持續擴大覆蓋范圍,智能決策有在任何行業發揮價值的潛力。在深度方面,當前智能決策在金融、消費品與零售、國防軍工、政府與公共服務等行業有比較深度的應用,但在其他行業應用較淺,未來將持續向“應用深水區”邁進。同時,各市場參與者也應當看到智能決策發展道路上可能存在的阻礙點。“決策大腦”的智能決策市場的一個發展方向,智能決策以“決策大腦”為承載將有更大的展示舞臺。

 

 
標簽: 智能決策
分享到: 0
收藏 0
 
更多>同類資訊
免責申明
推薦資訊
點擊排行
最新資訊更多>
最新供應更多>
網站首頁  |  聯系方式  |  關于我們  |  問題解析  |  版權隱私  |  使用協議  |  網站地圖  |  排名推廣  |  廣告服務  |  積分換禮  |  網站留言  |  RSS訂閱  |  違規舉報  |  粵ICP備1207862號

中國智能化網(zgznh®)--引領工業智能化產業發展 共享智能化+優質平臺

版權所有:深圳市智控網絡有限公司 學術指導:深圳市智能化學會

粵ICP備12078626號

深公網安備案證字第 4403101901094 號 | 粵公網安備 44030702001206號

 
主站蜘蛛池模板: 天天操天天干天天舔 | 91sex国产 | 天天干天天拍天天射天天添天天爱 | 99久久www免费 | 午夜看黄 | 丁香六月婷婷精品免费观看 | 欧美日韩亚洲国产精品一区二区 | 亚洲精品久久久久影 | 亚洲伊人久久大香线蕉综合图片 | 色婷婷视频 | 日韩精品一区二区三区中文字幕 | 国产日韩在线播放 | 一区二区三区久久 | 91sex国产| 666夜色666夜色国产免费看 | 国产综合久久一区二区三区 | 国产麻豆精品手机在线观看 | 成人免费观看高清在线毛片 | 波多野结衣中文字幕久久 | 国产三级精品三级在线观看 | 国产成人一区二区三区影院免费 | 免费日本视频 | 日本不卡毛片一二三四 | 日本不卡视频在线 | 777午夜精品被窝影院 | 欧美午夜精品久久久久久黑人 | 国产色婷婷视频在线观看 | 一级特级女人18毛片免费视频 | 92精品国产自产在线观看48页 | 69av免费观看| 久久精品欧美一区二区 | 成人在线观看免费视频 | 久久综合久色欧美婷婷 | 5388国产亚洲欧美在线观看 | 99久久99久久久精品久久 | 免费观看成人羞羞视频网站观看 | 精品1区2区3区 | 久久99青青久久99久久 | 免费观看黄视频 | 天天干天天操天天摸 | 福利姬在线精品观看 |